EN > People > Academic备份 > Content
Saeid (Adam) Pirasteh

Saeid (Adam) Pirasteh

Associate Professor of Surveying and Geo-Informatics

Research Interests:

Geological, environmental natural hazards and disaster management, spatial analysis and geoanalytics, Geospatial Artificial Intelligence (GeoAI), LiDAR point cloud data and remote sensing & drone image processing, modelling and algorithms development

Connect:

5thFloor, X-4553, Faculty of Geosciences & Environmental Engineering, Southwest Jiaotong University (SWJTU), The Western Park of the Hi-Tech Industrial Development Zone, Chengdu, Sichuan, China, 611756

Phone: +86-28-6636-7614 & +86-131-8381-9193

Fax: +86-28-66367590

Email:sapirasteh@swjtu.edu.cn

Education:

Ph.D. Geography and Environmental Management; University of Waterloo, Waterloo, Ontario, Canada (Dec 2017)

Postdoctoral, Asian Institute of Technology (AIT), Thailand (Aug 2007)

Ph.D. Geology (Remote Sensing and GIS); Aligarh University, India (Canadian University Equivalency & Accreditation from WES, 2012) (March 2004)

M.Sc. Applied Geology; Aligarh University, India (Canadian University Equivalency & Accreditation from WES, 2012) (May 2000)

B.Sc. Geology; Aligarh University, India (Canadian University Equivalency & Accreditation from WES, 2012) (May1998)

Experience:

Research Scientist Collaborator, Mobile Sensing and Geodata Science Lab, University of Waterloo, Waterloo, Ontario (Jan 2018-Present)

Researcher and Assistant Head of the Mobile Sensing and Geodata Science, University of Waterloo, Waterloo, Ontario (Dec 2011- Dec 2017)

Lead Chief Scientist, GRMC Inc. Research Centre, New York (Part-time) (April 2017-Aug 2019)

Senior Researcher and Lecturer, Universiti Putra Malaysia (UPM), Malaysia (Aug 2008- Sept 2011)

Adjunct Faculty, Research Institute of Hazards Engineering and Disaster Management, Shakhes-Sazan Ltd. Isfahan University, Iran (Aug 2005-Sept 2011)

Fellow and Postdoctoral Researcher, Asian Institute of Technology (AIT), Bangkok, Thailand (Aug 2005-Sept 2008)

Adjunct Faculty, Marine Technology and Science University of Khorramshahr, Khorramshahr, Iran (Feb 2004-Sept 2007)

Instructor/Assistant Professor, Azad University (IAU), Dezful Branch, Dezful, Iran (Feb 2000-Sept 2008)

Research Interests:

Geological, environmental natural hazards and disaster management, spatial analysis and geoanalytics, Geospatial Artificial Intelligence (GeoAI), LiDAR point cloud data and remote sensing & drone image processing, modelling and algorithms development, smart city and urban, sustainable development goals (SDGs) 2030. He is also interested in the development of related software, Geo App, mobile and web apps, AI, and application beyond.

Most Recent Selected Publications:

[1]Yazdan R., Varshosaz M.,Pirasteh S., Remondino F. (2020). Performance of image classifiers for automatic segmentation of traffic signs.Geomatica. [Accepted]

[2]Pirasteh S., Li J. (2020). Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data,Canadian Journal of Remote Sensing. DOI: 10.1080/07038992.2020.1823825.

[3]Zhu Q., Chen L., Hu H.,Pirasteh S., Li H., Xie X. (2020). Unsupervised Feature Learning to Improve Transferability of Landslide Susceptibility Representations.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 13:2917-3930, DOI: 0.1109/JSTARS.2020.3006192.

[4]Poreh D.,Pirasteh S. (2020).InSAR observations of the Medicina Geodetic Observatory and CosmoSkyMed images analysis,Natural Hazards. 103(3), 3145-3161, DOI:https://doi.org/10.1007/s11069-020-04123-4.

[5]Pirasteh S., Shamsipur G., Liu G., Zhu Q., Ye C. (2020). Developing landslide deformation geometric algorithm for modelling and simulation incorporating LiDAR-derived DEMs and UAV.Earth Science Informatics. pp: 1-15, DOI: 10.1007/s12145-019-00437-5.

[6]Ye C., Li Y., Li Liang,Pirasteh S., Cui P., Li J. (2019).Landslide Detection of Hyperspectral Remote Sensing Data Based on Deep Learning with Constrains.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. DOI: 10.1109/JSTARS.2019.2951725.

[7]Woodbridge K.P.,Pirasteh S., Parsons D.R. (2019). Distinguishing different fold-river interactions from a scheme by 13 remotely sensed characteristics key of river and fold geomorphology.Remote Sensing, 11, 2037; DOI:10.3390/rs11172037.

[8]Pirasteh S., Rashidi P., Rastiveis H., Huang S., Zhu Q., Liu G., Li Y., Li J. Seydipour E. (2019). Developing an Algorithm for Buildings Extractions and Determining Changes from Airborne LiDAR Point Clouds.Remote Sensing, 11, 1272; doi:10.3390/rs11111272.

[9]Gholami M., Ghachkanlu E. N., Khosravi K.Pirasteh S. (2019). Landslide Prediction Capability by Comparison of Frequency Ratio, Fuzzy Gamma and Landslide Index Method.Journal of Earth SystemScience. 128: 42. DOI: 10.1007/s12040-018-1047-8.

[10]Pirasteh S., Li J. (2018). Developing an algorithm for automated geometric analysis and classification of landslides incorporating LiDAR-derived DEM.Environmental Earth Sciences. 77:414.https://doi.org/10.1007/s12665-018-7583-3.

[11]Li L., Liu R.,Pirasteh S., Chen X., Long H., Li J. (2017). A novel genetic algorithm for optimization of conditioning factors in shallow translational landslides and susceptibility mapping.Arabian Journal of Geosciences. 10: 209. doi:10.1007/s12517-017-3002-4.

[12]Pirasteh S., Li J., Chapman M. (2017). Use of LiDAR-derived DEM and a Stream Length-gradient Index Approach to Investigation of Landslides in Zagros Mountains, Iran.Geocarto International. 33(9):912–926, DOI:10.1080/10106049.2017.1316779. [IF=1.646]

[13]Pirasteh S.,Li J. (2016). Landslides investigations from geo-informatics perspective: quality, challenges, and recommendations.Geomatics, Natural Hazards and Risk. 1-18. DOI: 10.1080/19475705.2016.1238850.

[14]Pirasteh S., Li J., Attarzadeh I. (2015). Implementation of the damage index approach to rapid evaluation building resistance for earthquake.Earth Science Informatics.8(4):751–758.(DOI)10.1007/s12145-014-0204-0.[IF=1.58]

[15]Li Z., Li J., Zhou S.,Pirasteh S. (2015). Comparison of spectral and spatial windows for local anomaly detection in hyperspectral imagery.International Journal of Remote Sensing.36(6):1570–1583,http://dx.doi.org/10.1080/01431161.2015.1017666.